About 319 results
Open links in new tab
  1. Optimizers - Keras

    Base Optimizer API These methods and attributes are common to all Keras optimizers. [source] Optimizer class keras.optimizers.Optimizer()

  2. Adam - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  3. SGD - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  4. Optimizers - Keras

    Optimizers SGD RMSprop Adam AdamW Adadelta Adagrad Adamax Adafactor Nadam Ftrl [source] apply_gradients method Optimizer.apply_gradients( grads_and_vars, name=None, …

  5. Muon - Keras

    learning_rate: A float, keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use. The learning rate.

  6. LossScaleOptimizer - Keras

    If wrapping a tf.keras.optimizers.Optimizer, hyperparameters can be accessed and set on the LossScaleOptimizer, which will be delegated to the wrapped optimizer.

  7. Lamb - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  8. Model training APIs - Keras

    Arguments optimizer: String (name of optimizer) or optimizer instance. See keras.optimizers. loss: Loss function. May be a string (name of loss function), or a keras.losses.Loss instance. See …

  9. ExponentialDecay - Keras

    The learning rate schedule is also serializable and deserializable using keras.optimizers.schedules.serialize and keras.optimizers.schedules.deserialize. Arguments

  10. Keras documentation: KerasTuner

    Keras documentation: KerasTunerKerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure …